Role of MerH in mercury resistance in the archaeon Sulfolobus solfataricus.

نویسندگان

  • James Schelert
  • Deepak Rudrappa
  • Tyler Johnson
  • Paul Blum
چکیده

Crenarchaeota include extremely thermoacidophilic organisms that thrive in geothermal environments dominated by sulfidic ores and heavy metals such as mercury. Mercuric ion, Hg(II), inactivates transcription in the crenarchaeote Sulfolobus solfataricus and simultaneously derepresses transcription of a resistance operon, merHAI, through interaction with the MerR transcription factor. While mercuric reductase (MerA) is required for metal resistance, the role of MerH, an adjacent small and predicted product of an ORF, has not been explored. Inactivation of MerH either by nonsense mutation or by in-frame deletion diminished Hg(II) resistance of mutant cells. Promoter mapping studies indicated that Hg(II) sensitivity of the merH nonsense mutant arose through transcriptional polarity, and its metal resistance was restored partially by single copy merH complementation. Since MerH was not required in vitro for MerA-catalysed Hg(II) reduction, MerH may play an alternative role in metal resistance. Inductively coupled plasma-mass spectrometry analysis of the MerH deletion strain following metal challenge indicated that there was prolonged retention of intracellular Hg(II). Finally, a reduced rate of mer operon induction in the merH deletion mutant suggested that the requirement for MerH could result from metal trafficking to the MerR transcription factor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of mercury resistance in the crenarchaeote Sulfolobus solfataricus.

Mercuric ion, Hg(II), inactivates generalized transcription in the crenarchaeote Sulfolobus solfataricus. Metal challenge simultaneously derepresses transcription of mercuric reductase (merA) by interacting with the archaeal transcription factor aMerR. Northern blot and primer extension analyses identified two additional Hg(II)-inducible S. solfataricus genes, merH and merI (SSO2690), located o...

متن کامل

Occurrence and characterization of mercury resistance in the hyperthermophilic archaeon Sulfolobus solfataricus by use of gene disruption.

Mercury resistance mediated by mercuric reductase (MerA) is widespread among bacteria and operates under the control of MerR. MerR represents a unique class of transcription factors that exert both positive and negative regulation on gene expression. Archaea and bacteria are prokaryotes, yet little is known about the biological role of mercury in archaea or whether a resistance mechanism occurs...

متن کامل

Mercury inactivates transcription and the generalized transcription factor TFB in the archaeon Sulfolobus solfataricus.

Mercury has a long history as an antimicrobial agent effective against eukaryotic and prokaryotic organisms. Despite its prolonged use, the basis for mercury toxicity in prokaryotes is not well understood. Archaea, like bacteria, are prokaryotes but they use a simplified version of the eukaryotic transcription apparatus. This study examined the mechanism of mercury toxicity to the archaeal prok...

متن کامل

The particle SSV1 from the extremely thermophilic archaeon Sulfolobus is a virus: demonstration of infectivity and of transfection with viral DNA.

The lemon-shaped "virus-like" particle SSV1 produced by the thermophilic archaeon Sulfolobus shibatae has not previously been observed to infect any host. Using a plaque assay suitable for the extreme growth conditions of this archaeon, we have shown infection of Sulfolobus solfataricus by SSV1. Upon infection, the viral genome was always found integrated into a tRNA gene of the host chromosome...

متن کامل

Antisense regulation by transposon-derived RNAs in the hyperthermophilic archaeon Sulfolobus solfataricus

We report the first example of antisense RNA regulation in a hyperthermophilic archaeon. In Sulfolobus solfataricus, the transposon-derived paralogous RNAs, RNA-257(1-4), show extended complementarity to the 3' UTR of the 1183 mRNA, encoding a putative phosphate transporter. Phosphate limitation results in decreased RNA-257(1) and increased 1183 mRNA levels. Correspondingly, the 1183 mRNA is fa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microbiology

دوره 159 Pt 6  شماره 

صفحات  -

تاریخ انتشار 2013